首页> 外文OA文献 >Mixed Gaussian-Impulse Noise Removal from Highly Corrupted Images via Adaptive Local and Nonlocal Statistical Priors
【2h】

Mixed Gaussian-Impulse Noise Removal from Highly Corrupted Images via Adaptive Local and Nonlocal Statistical Priors

机译:从高度损坏的图像中去除混合高斯脉冲噪声   自适应局部和非局部统计引物

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The motivation of this paper is to introduce a novel framework for therestoration of images corrupted by mixed Gaussian-impulse noise. To this aim,first, an adaptive curvelet thresholding criterion is proposed which tries toadaptively remove the perturbations appeared during denoising process. Then, anew statistical regularization term, called joint adaptive statistical prior(JASP), is established which enforces both the local and nonlocal statisticalconsistencies, simultaneously, in a unified manner. Furthermore, a noveltechnique for mixed Gaussian plus impulse noise removal using JASP in avariational scheme is developed--we refer to it as De-JASP. To efficientlysolve the above variational scheme, an efficient alternating minimizationalgorithm based on split Bregman iterative framework is developed. Extensiveexperimental results manifest the effectiveness of the proposed methodcomparing with the current state-of-the-art methods in mixed Gaussian-impulsenoise removal.
机译:本文的目的是介绍一个新颖的框架,用于存储混合高斯脉冲噪声破坏的图像。为此,首先提出了一种自适应curvelet阈值准则,该准则试图自适应地去除去噪过程中出现的扰动。然后,建立了一个新的统计正则化术语,称为联合自适应统计先验(JASP),该术语以统一的方式同时强制执行本地和非本地统计一致性。此外,还开发了一种在变分方案中使用JASP去除混合高斯噪声和脉冲噪声的新颖技术-我们将其称为De-JASP。为了有效地解决上述变分方案,开发了基于分裂Bregman迭代框架的有效交替最小化算法。广泛的实验结果证明了该方法在混合高斯冲动去除中的有效性与当前的最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号